投资协方差
❶ 相关系数和协方差所表示的意义有什么区别
相关系数和协方差所表示的意义区别:含义不同,作用不同。
一、含义不同:
协方差是一个用于测量投资组合中某一具体投资项目相对于另一投资项目风险的统计指标,通俗点就是投资组合中两个项目间收益率的相关程度,正数说明两个项目一个收益率上升,另一个也上升,收益率呈同方向变化。如果是负数,则一个上升另一个下降,表明收益率是反方向变化。
二、作用不同:
协方差的绝对值越大,表示这两种资产收益率关系越密切;绝对值越小表明这两种资产收益率的关系越疏远。
由于协方差比较难理解,所以将协方差除以两个投资方案投资收益率的标准差之积,得出一个与协方差具有相同性质却没有量化的数。这个数就是相关系数。计算公式为相关系数=协方差/两个项目标准差之积。
表示
相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变量之间相关的程度。相关系数是用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。
以上内容参考:网络-相关系数
❷ 投资学里面的协方差
你选择什么钥匙总是
取决于从你的眼睛或你的嘴巴或你的耳朵
喷出来的鲜血
你变换那钥哈哈匙,你变换那个
可自由地跟雪花一起飘扬的词。
❸ 协方差计算题
实际上协方差的公式是这样表达的:cov(A,B)=stdA*stdB*cor(A,B)
其中stdA为资产组版合A的标准差,权stdB为资产组合B的标准差,cor(A,B)为资产组合A和B之间的相关系数。
(你提供的协方差=相关系数*Var1*Var2公式并不正确,若要这样表达应为协方差=相关系数*(Var1*Var2)^(1/2))
故此根据上述的式子和数据可得cov(A,B)=stdA*stdB*cor(A,B)=2.24%*2.24%*1=0.0005
注意对于协议差的计算应该要忽略两个组合之间的所占的投资比例,原因是协议差的计算并不涉及相关比例的问题,而对于两个投资组合的方差则要考虑到投资所占比例问题,原因是在这个计算中投资比例会影响方差的结果,这是两个投资组合的方差公式:
VAR(A,B)=x^2*varA+(1-x)^2*varB+2x(1-x)*cov(A,B)
注:X为投资组合A所占的投资比例,故此投资组合了相应的投资比例为1-X
❹ 期望收益率、方差、协方差、相关系数的计算公式
1、期望收益率计算公式
HPR=(期末价格 -期初价格+现金股息)/期初价格
例:A股票过去三年的收益率为3%、5%、4%,B股票在下一年有30%的概率收益率为10%,40%的概率收益率为5%,另30%的概率收益率为8%。计算A、B两只股票下一年的预期收益率。
解:
A股票的预期收益率 =(3%+5%+4%)/3 = 4%
B股票的预期收益率 =10%×30%+5%×40%+8%×30% = 7.4%
2、方差计算公式
(4)投资协方差扩展阅读:
1、期望收益率,又称为持有期收益率(HPR)指投资者持有一种理财产品或投资组合期望在下一个时期所能获得的收益率。期望收益率是投资者在投资时期望获得的报酬率,收益率就是未来现金流折算成现值的折现率,换句话说,期望收益率是投资者将预期能获得的未来现金流折现成一个现在能获得的金额的折现率。。
2、方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。
3、协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。
4、相关系数是最早由统计学家卡尔·皮尔逊设计的统计指标,是研究变量之间线性相关程度的量,一般用字母 r 表示。由于研究对象的不同,相关系数有多种定义方式,较为常用的是皮尔逊相关系数。
❺ 两证券协方差和相关系数的计算
一、首先要明白这2个的定义 1、相关系数是协方差与两个投资方案投资收益标准差之积的比值,其计算公式为:相关系数总是在-1到+1之间的范围内变动,-1代表完全负相关,+1代表完全正相关,0则表示不相关。 2、协方差是一个用于测量投资组合中某一具体投资项目相对于另一投资项目风险的统计指标。其计算公式为:当协方差为正值时,表示两种资产的收益率呈同方向变动;协方差为负值时,表示两种资产的收益率呈反方向变动。二、要辨清两者的关系 1、相关系数与协方差一定是在投资组合中出现的,只有组合才有相关系数和协方差。单个资产是没有相关系数和协方差之说的。 2、相关系数和协方差的变动方向是一致的,相关系数的负的,协方差一定是负的。 3、(1)协方差表示两种证劵之间共同变动的程度:相关系数是变量之间相关程度的指标根据协方差的公式可知,协方差与相关系数的正负号相同,但是协方差是相关系数和两证券的标准差的乘积,所以协方差表示两种证劵之间共同变动的程度。(2)相关系数是变量之间相关程度的指标,相关系数在0到1之间,表示两种报酬率的增长是同向的;相关系数在0到-1之间,表示两种报酬率的增长是反向的,所以说相关系数是变量之间相关程度的指标。总体来说,两项资产收益率的协方差,反映的是收益率之间共同变动的程度;而相关系数反映的是两项资产的收益率之间相对运动的状态。两项资产收益率的协方差等于两项资产的相关系数乘以各自的标准差。
❻ 有关协方差和相关系数的计算问题
实际上协方差的公式是这样表达的:cov(A,B)=stdA*stdB*cor(A,B)
其中stdA为资产组合A的标准差,stdB为资产组合B的标准差,cor(A,B)为资产组合A和B之间的相关系数。
(你提供的协方差=相关系数*Var1*Var2公式并不正确,若要这样表达应为协方差=相关系数*(Var1*Var2)^(1/2))
故此根据上述的式子和数据可得cov(A,B)=stdA*stdB*cor(A,B)=2.24%*2.24%*1=0.0005
注意对于协议差的计算应该要忽略两个组合之间的所占的投资比例,原因是协议差的计算并不涉及相关比例的问题,而对于两个投资组合的方差则要考虑到投资所占比例问题,原因是在这个计算中投资比例会影响方差的结果,这是两个投资组合的方差公式:
VAR(A,B)=x^2*varA+(1-x)^2*varB+2x(1-x)*cov(A,B)
注:X为投资组合A所占的投资比例,故此投资组合了相应的投资比例为1-X
❼ 协方差怎么计算,请举例说明
cov(x,y)=EXY-EX*EY
协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY
协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论
举例:
Xi 1.1 1.9 3
Yi 5.0 10.4 14.6
E(X) = (1.1+1.9+3)/3=2
E(Y) = (5.0+10.4+14.6)/3=10
E(XY)=(1.1×5.0+1.9×10.4+3×14.6)/3=23.02
Cov(X,Y)=E(XY)-E(X)E(Y)=23.02-2×10=3.02
此外:还可以计算:D(X)=E(X^2)-E^2(X)=(1.1^2+1.9^2+3^2)/3 - 4=4.60-4=0.6 σx=0.77
D(Y)=E(Y^2)-E^2(Y)=(5^2+10.4^2+14.6^2)/3-100=15.44 σy=3.93
X,Y的相关系数:
r(X,Y)=Cov(X,Y)/(σxσy)=3.02/(0.77×3.93) = 0.9979
表明这组数据X,Y之间相关性很好!
为样本均值,n为样本例数。