當前位置:首頁 » 投資融資 » 量化投資容量

量化投資容量

發布時間: 2021-11-12 10:57:26

A. A股巨額成交量究竟由誰貢獻量化交易為什麼就火了

在A股巨額交易的背後,市場圍繞量化交易擴大交易量的觀點展開了熱烈討論。一些機構已經做出判斷,定量交易佔A股交易的50%左右。許多業內人士回應說,這些數據中有50%是不真實的,顯然被高估了。A股量化交易的實際交易比例估值仍存在較大差距,一般在10%-35%之間。

復雜的交易策略可以在回測中取得良好的效果,但它們對數據的要求較高,對歷史數據的擬合能力較好,但是它們的泛化能力太差,無法預測未來的趨勢。定量交易的核心是高頻率。高頻引發的過度投機導致了市場行為的大規模顛覆。利用高頻帽子游戲反復砍柴,製造極端波動,扭曲股市行為和生態,破壞投融資環境。普通投資者應對高頻的方式是在中長期取代短期投機。即使是定量交易也不能改變股票市場和股票走勢。

B. 最近經常聽人提起量化對沖,請問量化投資受熱捧的原因是什麼

量化投資受熱捧主要有幾個原因:
一、 量化投資產品是一種風險較低同時收益可觀的理財產品。長期來看,年化15%-20%的收益率是可以持續的,而量化投資的最大風險一般在10%-15%左右。量化投資是一種可以長期持續穩定的盈利模式,而這種盈利能力的關鍵在於量化模型的好壞。可以說量化投資更接近科學的領域而不是金融的領域,量化投資的專家基本都是數理和計算機專業畢業,他們的專長是數理分析和數學建模。
二、 量化投資與股票市場的相關性很低,量化產品可以做到不論牛市、熊市、震盪市都賺錢。傳統的陽光私募,一般只能跟隨市場的節奏,牛市賺錢,熊市虧錢,震盪市看擇時的運氣如何。而量化對沖產品則把市場波動全部利用股指期貨的空頭對沖了。是一種不主動選擇入場時間的永遠滿倉的投資方法。
一般來說,量化對沖策略在熊市和震盪市比較容易賺錢,而大牛市有可能跑不贏指數。也就是說投資量化對沖是一種放棄了部分牛市收益去換取熊市和震盪市也能賺錢的策略。所以量化對沖產品更接近固定收益的信託產品,是一種類固定收益產品,非常適合風險厭惡者和機構投資者。
三、 房地產神話和剛性兌付的打破。在中國房地產自2013年進入大拐點後,不論是買房投資還是房地產信託都不再受投資者的熱捧。10萬億房地產信託資金最少有一半要撤出來,而縱觀所有投資市場,只有二級市場有這個容量能夠容納這么多資金,不然這筆資金流到哪裡都會帶來問題,而買慣了房地產信託的投資者是無法接受二級市場的波動性的,所以量化對沖產品成立最佳的承接這筆資金的投資產品。相比之下銀行固定收益理財產品雖然收益穩定,但是在降息周期中收益率是遠遠落後於量化對沖產品,年化收益大概4%-6%之間,還跑不贏通脹。
四、 機構投資大量涌現。2014年出現了大量的機構投資者,尤其表現在FOF(組合基金)上。銀行系中,光大銀行2014年7月份成立了第一隻銀行系的組合基金(MOM)產品。目前招商銀行和工商銀行也在大力推動FOF業務發展。機構投資者代表最成熟和最理性的投資者,這部分投資者目前主要的資產配置還是以量化對沖的產品為主,機構投資者為量化對沖基金提供了大量穩定的資金,為量化對沖基金發展提供了良好的溫床。

C. 高頻交易和量化交易到底有什麼區別

從歷史上看,很多高頻交易公司的創始人都是交易員出身,原來就從事衍生品的做市、套利等業務。一開始這些工作並不需要多高深的知識。隨著計算機技術的發展,交易的自動化程度和頻率也逐漸提高,這些公司逐漸聘請一些數學、統計、計算機背景較強的人員加入以適應形勢的發展。當然,這個過程也出現了一些分化,有的公司還是保留了交易員在公司的主導地位,並且始終未放棄人工交易,最終形成了人機結合的半自動交易;而另外一些公司對新鮮技術的接受程度更高一些,往往採取全自動的交易模式。事實上,也沒有證據表明全自動交易的公司就比半自動交易的公司更為優越,到目前為止,也只能說是各有利弊。
人工交易的最大弊端在於手動下單的地方離交易所較遠,在行情劇變的時候往往搶不到單。在這一點上,全自動交易的公司可以通過託管機房來最大程度減少信號傳輸的時間,不過自動化交易往往因為程序過於復雜,加上很多公司人員流動較大,在程序的維護上會出現一些失誤,最終程序出錯釀成大禍,比如著名的騎士資本。
至於過度擬合無法抵禦黑天鵝事件,那是人工交易和自動交易都無法避免的問題。一般來說,Getco、Jane Street、SIG、Virtu Financial等是半自動交易,Tower Research、Hudson River Trading、Jump Trading等是全自動交易。
量化投資公司跟高頻交易公司則有很大的不同。首先,美國的量化投資公司基本上都是量化背景極強的人創辦的,比如說文藝復興的創始人西蒙斯是數學家出身,DE Shaw的創始人David Shaw是計算機教授出身,AQR的創始人Cliff Asness是金融學家出身,而高頻交易公司則更多是傳統交易員創辦的;其次,量化投資一般依賴於復雜的模型,而高頻交易一般依賴於運行高效的代碼。
量化投資公司的持倉時間往往達到1—2個星期,要預測這么長時間的價格趨勢需要處理的信息自然非常龐大,模型也因此更為復雜,對程序的運行速度反而沒那麼敏感;高頻交易處理信息的時間極短(微秒或毫秒級),不可能分析很多的信息,因此模型也趨於簡單,競爭優勢更多依靠代碼運行的效率,很多人甚至直接在硬體上寫程序;而最後,量化投資的資金容量可達幾百億美元,而高頻交易公司往往只有幾千萬至幾億美元,但由於高頻交易的策略表現遠比量化投資穩定,如Virtu Financial交易1238天只虧1天,因此一般都是自營交易,而量化投資基金一般來說都是幫客戶投資。

D. 零基礎想學金融投資,量化交易編程,該怎麼學有哪些方法

我想問你學習的方法以編程是通過設定來完成的

E. 中國量化交易的現狀與未來前景如何

在歐美市場,特別是在美國,量化交易已經非常成熟。在過去的十年裡,美國的對沖基金逐漸轉向了量化交易。我國的數量發展還不到歐美國家的水平,還處於比較初級的階段。但由於國內市場人口基數大,意味著國內市場潛力很大。

雖然短期內我量化貿易的發展還不如美國成熟,但最終的發展方向應該是相似的。通過對量化交易策略的研究,我們可以預測量化交易的未來前景。一個成熟的量化交易市場是值得我們學習的量化交易策略和理論,也是未來的發展方向。目前我國股市的有效性還不高,但隨著量化投資能力的提高,市場的有效性會進一步提高,技術的波動會越來越小,技術的量化可能會達到瓶頸,從而轉向基本面量化。

F. 什麼是量化投資交易策略

一文看懂量化投資策略

閑話基

量化投資在近些年受到越來越多的關注,包括規模、策略、業績。量化投資,是指通過藉助統計學、數學方法,運用計算機從海量歷史數據中,尋找能夠帶來超額收益的多種「大概率」策略,按照策略構建的數量模型嚴格執行投資,力求獲得長期穩定可持續高於平均的超額回報

跨市場策略涉及外匯兌換、國際期貨交易對沖,交易實現難度大,國內用得少。

由於期貨具有杠桿屬性,這類策略持倉的市值往往很大,有時候甚至超過產品資產總值,導致收益率的波動率是所有量化策略中最大的。在市場出現連續震盪行情時,這樣策略由於杠桿屬性會出現較大的回撤。另外一個對這類策略的一個限制是,目前市場上活躍交易的期貨品種不多,高頻交易很大程度倚重於品種成交量,開平倉時間間隔較短,使得策略容量不大。

G. 如何識別優秀的量化交易策略

最快的方式就是用模擬賬號去模擬
看一下收益就知道策略好或者不好

H. 量化投資的前景

隨著20世紀80年代以來各類證券和期權類產品的豐富和交易量的大增,華爾街已別無選擇,不用這些模型,不使用電腦運算這些公式,他們便會陷於困境,自招風險。1997~1998年亞洲金融危機,市場暴跌,量化投資的演算法交易也起到了同樣的壞作用。此外,始於2007年的金融危機中,量化投資也未能倖免。時過境遷,2011年,量化基金再次表現優異。
稍微接觸到資本市場的人,大都聽說過基本面投資和價值投資,而對於這方面的天才人物「股神」巴菲特,更是幾乎家喻戶曉,婦孺皆知。他以企業財務報表的分析見長,擅長挖掘企業的內在價值,一旦買入便長期持有,持續獲得穩定高額收益,為股東創造了豐厚利潤,無人能及。
相比之下,與價值投資同等重要的量化投資——即藉助數學、物理學、幾何學、心理學甚至仿生學的知識,通過建立模型,進行估值、擇時及選股,則沒有那麼幸運——在大多數人眼裡,量化投資是一個神秘的領域,深不可測,玄奧無比,令人望而卻步。世人皆知巴菲特,而對於號稱最能賺錢的基金經理人、在20年的時間里創造了年均凈回報率高達35%驚人傳奇的量化投資大師西蒙斯,卻只能成為少數人的專屬。
量化投資看似神秘,但並不古老。它從70年代開始逐漸興起,90年代才大行其道。之所以如此,是因為量化投資有其誕生的特定土壤,需要一系列的條件方能破土而出,這些條件其實相當苛刻。
很難想像,量化投資技術並非發端於華爾街,而是肇始於學術象牙塔里的少數「怪才」,他們長期不被正統的經濟學所接受,甚至遭到排斥,因此處境艱難。1952年3月發表「投資組合選擇」論文、提出現代財務和投資理論最著名洞見的馬克維茨,以該理論參加博士答辯,竟然戰戰兢兢差點未獲通過。1990年10月,這些人中有三位獲得諾貝爾經濟學獎,當時局外人很少有人清楚為什麼他們能夠得此殊榮;而三人中的其中一位則將他們的獲獎比作「芝加哥業余球隊贏得了世界盃」。
但是,沒有來自象牙塔的現代金融理論,便沒有量化投資的興起。馬克維茨的投資組合理論,提出了風險報酬和效率邊界概念,並據此建立了模型,成為奠基之作。托賓隨後提出了分離理論,但仍需要利用馬克維茨的系統執行高難度的運算。
夏普1963年1月提出了「投資組合的簡化模型」,一般稱為「單一指數模型」。馬克維茨模型費時33分鍾的計算,簡化模型只用30秒,並因節省了電腦內存,可以處理相對前者8倍以上的標的證券。1964年,夏普又發展出資本資產定價模型(CAPM),這是他最重要的突破,不僅可以作為預測風險和預期回報的工具,還可以衡量投資組合的績效,以及衍生出在指數型基金、企業財務和企業投資、市場行為和資產評價等多領域的應用和理論創新。
1976年,羅斯在CAPM的基礎上,提出「套利定價理論」(APT),提供一個方法評估影響股價變化的多種經濟因素。布萊克和斯克爾斯提出了「期權定價理論」。莫頓則發明了「跨期的資本資產定價模型」。
有趣的是,不少人最初並非經濟學家,如巴契里耶和布萊克原先是數學家,夏普則從事醫學,奧斯伯恩為天文學家,沃金與坎德爾是統計學家,而特雷諾則是數學家兼物理學家。他們轉行都是被金融市場研究所深深吸引,沉迷於其中的無窮魅力。
然而,僅有現代投資(行情 股吧 買賣點)理論的建立,及各類模型的完善與推陳出新,並不會直接催生出量化投資,它還需要其他幾個重要前提條件,比如機構投資者在市場中占據主導,電腦技術足夠發達,以及傳統華爾街投資家的傲慢被市場擊潰轉而被迫接受新的投資理念。
量化投資不會出現在個人投資者為主的時代。個人投資者既缺乏閑暇的時間,也普遍無此能力。隨著退休基金和共同基金資產的大幅增加,它們成為市場上的主要機構投資者,並委託專業機構進行投資操作。管理大規模資產,需要新的運作方式和金融創新技術,同時專業的投資管理人也有能力和精力專注地研究、運用這些技術。
沒有發達的電腦技術,量化投資也將成為無源之水,無米之炊。在電腦革命發生前,根本無法根據上述模型進行運算。1961年,與馬克維茨共同獲得1990年諾貝爾獎的夏普曾說,當時即使是用IBM最好的商用電腦,解出含有100隻證券的問題也需要33分鍾。當今,面對數不勝數的證券產品,以及龐大的成交量,缺了先進電腦的運算速度和容量,許多復雜的證券定價甚至不可能完成。
量化投資在不經歷市場的崩盤,傲慢投資者的自信未被摧毀之前,不會盛行。比較早的時候,華爾街對學術界把投資管理的藝術,轉化成通篇晦澀難懂的數學方程式一直持有敵意。他們認為,投資管理需要天賦、直覺以及獨特的駕馭市場的能力,基金經理可以獨力打敗市場,而無需依靠那些缺乏靈魂、怪異的數學符號和縹緲虛幻的模型。在美國,70年代初期表現最佳的基金經理人從未聽過貝塔值,並認為那些擁有數學和電腦背景的學者只是一群騙子。
1973~1974年美國債券市場和股票市場全面崩盤,明星基金經理人煙消雲散,財富縮水堪比30年代大蕭條。當時,頗有先見的投資顧問兼作家彼得·伯恩斯坦認為,必須採用更好的方法管理投資組合,並創辦了《投資組合》雜志,一出刊便獲得成功。此後,隨著80年代以來各類證券和期權類產品的豐富和交易量的大增.量化投資光彩炫目,但也具有魔鬼般的力量。它時而風光無限,但也常常墜入深淵。
1987年10月大股災,黑色星期一,當天股市和期貨成交量高達令人吃驚的410億美元,價值瞬間縮水6000億美元。很多股份直接通過電腦而不是經由交易所交易。一些採用投資組合保險策略的公司,在電腦模式的驅使下,不問價格機械賣出股票。很多交易員清楚這些投資組合會有大單賣出,寧願走在前面爭相出逃,加劇了恐慌。針對整個投資組合而非單個證券,機械式的交易,電腦的自動操作,使得這種量化投資出現助跌之效,大量的空單在瞬間湧出,將市場徹底砸垮。
在此次亞洲金融危機中,著名的長期資本管理公司,這家來自學術象牙塔的怪才充斥、主要運用量化投資技術的對沖基金,曾經在市場上呼風喚雨、無往不利,但偏偏遭遇俄羅斯國債違約這一小概率事件,陷入破產之境,迫使美聯儲集華爾街諸多投資銀行之力,加以救助。此外,始於2007年的金融危機中,量化投資也未能倖免。
雖然麻煩不斷,但量化投資依然必要且有效。要知道,在本次金融危機發生前,量化基金的表現連續8年超過其他投資方式。當然,挫折也會帶來量化投資技術的更新和完善,比如在模型中設定新的變數,尤其是加入以往並未包含的宏觀經濟參數。時過境遷,2011年,量化基金再次表現優異。雖然量化投資能否就此再度復興仍屬未知,但由本文先前的討論,漫漫歷史長河,此一趨勢已不可逆轉,量化投資依然擁有光明的未來。
德意志銀行的董事總經理、全球量化投資主管羅崟先生在激烈的競爭中脫穎而出,奪得全球最權威的《機構投資者》期刊2011年美國和歐洲量化分析第一名的佳績。在華爾街40餘年排名史上,罕有華人獲此殊榮。《金融時報》慧眼識金,就此專門做了訪談,並囑我就量化投資寫篇評論。我欣然命筆,並藉此祝願量化投資在中國的資本市場上,能夠早日生根。

I. 在中國,做量化交易一天的工作是怎樣的

做量化交易一天的工作:

8:00~9:00: 打開交易策略,設置一些運營參數

9:00~9:30: 觀察策略運轉,確保沒有問題

9:30~15:30: 解決已有策略的問題並研究新策略,測試新想法

15:30~17:00: 分析交易記錄, 確定第二天的交易計劃

17:00~18:00: 運動

崗位職責:
分析金融市場(期貨、股票等)數據,尋找可利用的機會;開發與維護量化交易策略;提供機器學習/數據挖掘相應的技術支持;

崗位要求:
1.熟練計算機編程能力,熟練掌握至少一門編程語言,python優先;

理工科背景,具有良好的數理統計、數據挖掘等相關知識儲備,熟悉機器學習方法(分析科學問題和相應數據,建立模型和方法,驗證模型和方法,應用模型和方法並分析結果,改進模型和方法);

有處理分析大量數據的經驗,並能熟練選擇和應用數據挖掘和機器學習方法解決科研和工作中的實際問題;良好的自我學習和快速 學習能力,有工作激情,喜歡金融行業;兩年及以上實驗室研究經驗或研發類工作經驗優先;

(9)量化投資容量擴展閱讀

量化交易是指以先進的數學模型替代人為的主觀判斷,利用計算機技術從龐大的歷史數據中海選能帶來超額收益的多種「大概率」事件以制定策略,

極大地減少了投資者情緒波動的影響,避免在市場極度狂熱或悲觀的情況下作出非理性的投資決策。

熱點內容
重百超市供應商系統 發布:2021-11-27 07:59:12 瀏覽:259
成都瓦爾塔蓄電池經銷商 發布:2021-11-27 07:59:09 瀏覽:828
寧波辦公用品供應商 發布:2021-11-27 07:59:05 瀏覽:753
廣州人人店經銷商 發布:2021-11-27 07:59:03 瀏覽:49
旺旺上海經銷商 發布:2021-11-27 07:58:59 瀏覽:362
三折門上海經銷商 發布:2021-11-27 07:58:20 瀏覽:207
澳洲保健品代理商 發布:2021-11-27 07:58:17 瀏覽:728
木旯代理商 發布:2021-11-27 07:58:15 瀏覽:464
供應商開發年度總結 發布:2021-11-27 07:58:07 瀏覽:578
湯臣鈣片代理人是誰 發布:2021-11-27 07:56:27 瀏覽:433